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[1] A field experiment was conducted in northern Chile at
an altitude of 5.3 km to evaluate the accuracy of line-by-line
radiative transfer models in regions of the spectrum that are
typically opaque at sea level due to strong water vapor
absorption. A suite of spectrally resolved radiance instru-
ments collected simultaneous observations that, for the first
time ever, spanned the entire terrestrial thermal spectrum
(i.e., from 10 to 3000 cm™', or 1000 to 3.3 um). These
radiance observations, together with collocated water vapor
and temperature profiles, are used to provide an initial eval-
uation of the accuracy of water vapor absorption in the far-
infrared of two line-by-line radiative transfer models. These
initial results suggest that the more recent of the two models
is more accurate in the strongly absorbing water vapor pure
rotation band. This result supports the validity of the Turner
et al. (2012) study that demonstrated that the use of the more
recent water vapor absorption model in climate simulations
resulted in significant radiative and dynamical changes in
the simulation relative to the older water vapor model.
Citation: Turner, D. D., et al. (2012), Ground-based high spec-
tral resolution observations of the entire terrestrial spectrum under
extremely dry conditions, Geophys. Res. Lett., 39, L10801,
doi:10.1029/2012GL051542.

1. Introduction

[2] Accurate radiative transfer codes are required in order
to represent gaseous absorption and other radiative processes
in climate and weather prediction models, as well as in
remote sensing algorithms. The most accurate radiative
transfer codes treat the absorption by atmospheric gases in a
line-by-line manner, using the spectral information provided
by databases such as HITRAN [Rothman et al., 2009].
However, there are still significant uncertainties in line-by-
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line radiative transfer models; these uncertainties are related
to the line parameters in the spectral database (e.g., line
absorption strengths and widths), the shape of the absorption
line, and spectral features related to bimolecular (e.g., water
vapor dimer) absorption. Because line-by-line modeling forms
the basis for the approximations in less computationally-
expensive band-models and correlated-k radiative transfer
codes that are used in dynamical models, the spectroscopic
uncertainties propagate into weather and climate simulations.

[3] The accuracy of line-by-line radiative transfer models
is often evaluated using spectral radiative closure analysis,
which require three components: (1) spectrally-resolved radi-
ance observations; (2) characterization of the atmospheric state
impacting these observations, such as profiles of water vapor,
temperature, and cloud properties; and (3) a radiative transfer
model that can be used to simulate the radiance measurements.
Radiative closure exercises have successfully been used to
evaluate and improve line-by-line radiative transfer models for
many years [e.g., Serio et al., 2008; Turner et al., 2004; Tobin
et al, 1999]. However, adequate evaluation using ground-
based observations requires that the atmospheric transmissiv-
ity be significantly larger than zero (i.e., >5%).

[4] In particular, evaluation of water vapor absorption
parameters, both associated with absorption lines and water
vapor continuum absorption, is very difficult to make in
strongly absorbing water vapor bands due to the opacity of
the atmosphere. Therefore, it is essential that radiative clo-
sure studies targeting these spectral regions are based on
surface spectral measurements from locations characterized
by very low abundances of precipitable water vapor (PWYV).
The Atmospheric Radiation Measurement (ARM) program
conducted two such field experiments: the first and second
Radiative Heating in Underexplored Bands Campaigns
(RHUBC) [Turner and Mlawer, 2010]. RHUBC-I occurred
at the ARM North Slope of Alaska site (71.3°N, 97.4°W, 8§ m
MSL) in 2007, while RHUBC-II was held at an altitude of
5.3 km in the Atacama Desert in northern Chile (23.0°S,
67.8°W). The PWYV at this latter site can go as low as 0.2 mm,
which is nearly 20x smaller than typical mid-latitude sites.
At these small amounts of PWV, large portions of the elec-
tromagnetic spectrum, including regions of the water vapor
pure rotation band (from 0 to approximately 625 cm™')
become semitransparent, allowing the spectroscopic foun-
dation of radiative transfer calculations to be evaluated.

[5] Previous campaigns similar to RHUBC-II have yielded
valuable results. Measurements made in the 300600 cm ™'
range during RHUBC-I and ECOWAR [Serio et al., 2008],
as well as observations at 5 cm ™' during a separate field
experiment [Turner et al., 2009; Payne et al., 2011], led to
sizeable modifications to the previously derived strength of
the water vapor continuum in the 10-700 cm™' region
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Figure 1. (top) Radiosonde observations of surface tem-
perature and PWV during RHUBC-II, including those for
the ‘wet’ (red) and ‘dry’ (blue) case studies, and (bottom)
the temperature and water vapor mixing ratio profiles for
the two case studies.
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[Delamere et al., 2010]. This change was implemented into
the radiation code utilized by the Community Earth System
Model (CESM) and evaluated relative to the baseline CESM.
The analysis of the two climate model simulations indicated
that this change in the water vapor absorption strength in the
model had a statistically significant impact on both the radi-
ation and dynamics [Turner et al., 2012] with changes in the
vertical structure of temperature, humidity, and cloud
amount, all of which impacted the diabatic heating profile.
This study highlighted the importance of properly modeling
the nature of water vapor absorption in strongly absorbing
water vapor bands.

[s] RHUBCH-II included instruments that, for the first time,
collected spectrally resolved radiance observations over the
entire terrestrial spectrum. Examples of these observations
are provided here, including an initial evaluation of two
versions of the often-used line-by-line model LBLRTM
[Clough et al., 2005; Mlawer et al., 2012] in spectral regions
that are typically opaque. Data from this experiment will
allow the evaluation of the modeled strength of the water
vapor absorption in the middle of the far-infrared portion of
the spectrum (20-300 cm™ '), a spectral region that has
not been evaluated before. The scientific motivation and
details of the RHUBC-II experiment, including a full list of
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Figure 2. The observed downwelling radiance and brightness temperature over the entire terrestrial thermal spectrum
observed during the (a) wet and (b) dry case during RHUBC-II. The gray spectra are the atmospheric transmittance spectra
computed from the LBLRTM (axis on right). A radiance unit (RU) is 1 mW / (m* sr cm™').
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Figure 3. Same as Figure 2, but only over the water vapor pure rotation band in the far-infrared.

instruments that were deployed, is provided in Turner and
Mlawer [2010].

2. Data

[7] Four Fourier Transform Spectrometers (FTS) instru-
ments made measurements of the terrestrial infrared spec-
trum during RHUBC-II:

[8] 1. The Atmospheric Emitted Radiance Interferometer
(AERI) measures radiance between 520-3000 cm ™', Liquid
nitrogen (LN,) was used to cool the detectors to ~75 K. It is
calibrated by two high-emissivity blackbodies, and after
accounting for the non-linearity of the detector, has a
radiometric accuracy better than 1% of the ambient radiance
(3-0) [Knuteson et al., 2004].

[9] 2. The Far Infrared Spectroscopy of the Troposphere
(FIRST) is a compact plane FTS that has sensitivity from
100-1600 cm~'. The detector is cooled by liquid helium
(LHe) to ~4 K to reduce instrument noise. The FIRST
beamsplitter has absorption features at wavenumbers larger
than 780 cm ™', and thus only data at smaller wavenumbers
are used in this study. Additional details on the FIRST design
and calibration are provided in Mlynczak et al. [2006].

[10] 3. The Radiation Explorer in the Far Infrared — Prototype
for Applications and Development (REFIR-PAD) utilizes
pyroelectic detectors operating at 25°C and is able to sense
radiation from 100-1400 cm™ ' [Palchetti et al., 2005]. The

REFIR-PAD beamsplitter has some absorption features
around 1110 and 1250 cm™'; data in these spectral regions
aren’t analyzed here. Like the AERI, both the FIRST and
REFIR-PAD use two blackbodies at hot and near ambient
temperatures for calibration.

[11] 4. The Smithsonian Astronomical Observatory (SAO)
sub-mm FTS is a step-scanned interferometer using polari-
zation chopping between a scene and reference target. A
balanced pair of bolometers, cooled to 4 K with LHe, detects
the modulated signal [Paine et al., 2000]. The FTS viewed a
LN, target on each operation day, and an ambient tempera-
ture dependent calibration was derived. The spectral range
observed by this instrument is 10-115 cm™'. The field-of-
view of the SAO FTS, as well as the AERI, FIRST, and
REFIR-PAD, is less than 2 degrees.

[12] Also in operation at the site were two instruments that
made measurements in the microwave region. The G-band
water vapor radiometer profiler (GVRP) [Cimini et al., 2009]
uses a single frequency-agile synthesizer to measure emis-
sion in 15 channels from 170 to 183.31 GHz (5.6-6.1 cm™ "),
while the Humidity and Temperature Profiler (HATPRO)
[Rose et al., 2005] uses direct detection to measure emission
in 7 channels from 22-31 GHz (0.74-1.03 cm™ ") and 7 chan-
nels from 51-58 GHz (1.7-1.9 cm ™). Both radiometers were
calibrated with LN, and tip curves [Han and Westwater, 2000],
depending on channel opacity.
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Figure 4. Comparison of monochromatic LBLRTM calcu-
lations for the (top) wet and (bottom) dry cases in (left and
right) two microwindows. The calculations were performed
using two different versions of the model. Data from the
SAO sub-mm, FIRST, and REFIR are shown with symbols.
In the lower right-hand corner of each panel are error bars
(1-0) at 29 and 238 cm™'; the calculation uncertainty is
associated with +3% error in PWV. The transmission of
the atmosphere at 29 and 238 cm ', computed using
LBLRTM vl11.6, is 35% and 5% on 31 Aug and 70% and
40% on 19 Sep.

[13] Operations were conducted on about 40 days during
the 3-month experiment. Vaisala RS92-k radiosondes were
launched during periods when the sky conditions were clear
or cirrus; typically 1-4 sondes were launched per day. The
range of surface temperatures and PWV observed by the
~120 radiosondes that ascended to at least 15 km is shown
in Figure 1. The radiosonde-observed humidity profiles have
been scaled to agree with the downwelling measurements from
the GVRP; the accuracy of the resulting PWV values is esti-
mated to be +3% [Cimini et al., 2009]. Previous radiative
closure exercises have scaled the humidity profile from Vaisala
radiosondes to agree with microwave radiometer observations
in order to reduce the uncertainty in the sonde observations
[e.g., Turner et al., 2004; Cady-Pereira et al., 2008].

3. Results

[14] Two clear sky cases with differing PWV amounts
were selected from the dataset to illustrate the spectral cov-
erage and utility of the data. The collocated micropulse lidar
was not functioning during most of the experiment, and thus
clear skies were determined from manual sky observations
and the lack of temporal variability in the downwelling
infrared spectra in transparent channels (e.g., at 900 cm ™).
The two cases are on 31 Aug with a PWV of 0.81 mm and
19 Sep with a PWV of 0.28 mm; both cases have similar
surface temperatures (Figure 1).

[15] Figure 2 shows the radiance observations from the
AERI, FIRST, REFIR-PAD and SAO sub-mm over the
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entire terrestrial spectrum in both radiance and brightness
temperature (T,). The gray spectrum is the atmospheric
transmission computed with the LBLRTM radiative transfer
code. These are, to our knowledge, these are the first surface-
based spectrally resolved radiance measurements that span
the entire terrestrial spectrum from 3 to over 1000 pm.

[16] Figure 3 shows the downwelling radiance in the
strongly absorbing water vapor rotation band. The RHUBC-II
observations capture the “opening” (i.e., semi-transparency) of
the microwindows on both the long- and short-wavenumber
side of this absorption band, and illustrate the uniqueness of
the RHUBC-II dataset for studies to evaluate the accuracy of
radiative transfer models in this spectral region.

[17] Figure 4 illustrates two microwindows, one on either
side of the region of peak absorption of the water vapor
rotation band, that were observed during RHUBC-IL
Monochromatic line-by-line downwelling radiance calcula-
tions were made with two versions of the LBLRTM (see
Table 1 for model details). For these cases, the change in
PWV from the original RS92 radiosonde based on the
GVRP measurements were 7.7% and 2.5% in the wet and
dry case, respectively. The error bars (lower right-hand
corner of each panel of Figure 4) illustrate, for 29 and
239 cm™ !, the uncertainty in the observations and the cal-
culations, where the latter assume a £3% uncertainty in
PWV. This figure illustrates that for these cases the obser-
vations in these two microwindows are better fit by the
LBLRTM v11.6. At 239 cm™', the superior results of the
more recent model are likely due to an improved water vapor
continuum, which was formulated taking into account
the results from RHUBC-I. Interpretation of the results at
29 cm™! is complicated by the multiple refinements that
have been applied to the continuum model since CKD v2.4/
LBLRTM v6.01, including a ~35% increase in the nitrogen
continuum based on Boissoles et al. [2003] and a decrease in
water vapor foreign continuum absorption. These changes
more-or-less cancel out for the dry case, but for the wet case
the overall effect is decreased absorption in the more recent
model. These two cases suggest that the absorption in this
region may need to be reduced to obtain better agreement
with observations, but analysis of the full RHUBC-II dataset
will be necessary to substantiate this result and determine if
any deficiency lies in the water vapor continuum or in
another component of the model.

[18] Many GCMs use the water vapor continuum absorp-
tion model embodied in LBLRTM v6.01. These results,
together with the GCM simulation study by Turner et al.
[2012], suggest that an improvement in modeling can be
realized by updating the water vapor continuum model to the
latest version.

4. Summary

[19] The RHUBC-II experiment collected, for the first
time, spectrally resolved measurements across the entire
thermal terrestrial spectrum, and specifically across the
entire water vapor pure rotation band. The unique spectral

Table 1. LBLRTM Model Configuration
LBLRTM Version

Line Parameter Database Continuum Version

v6.01
vll.6

aer_hitran2000 update 1.1 CKD v2.4
aer v2.2 (based on HITRAN 2004) MT CKD v2.4
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observations, together with the additional instruments that
characterized the atmospheric state (e.g., radiosondes,
GVRP, HATPRO) are being used to evaluate gaseous
absorption models in spectral regions that have significant
uncertainty due to lack of observational data. One advantage
to downwelling ground-based spectral observations col-
lected during RHUBC-II, as opposed to satellite-borne
observations (that currently don’t exist in the far-infrared), is
that the cold background results in a larger signal from the
continuum than an upwelling radiance observation that
includes emission from the earth’s surface.

[20] A full analysis of the RHUBC-II dataset that uses all
of the available cases and accounts for details ignored here,
such as instrument filter functions and potential small con-
tributions within the instruments (i.e., the so-called chimney
effect, which impacts the radiance slightly in the opaque
elements of the spectrum), is currently underway. This future
study will consider the colder and wetter cases observed
during previous related field experiments such as RHUBC-I
and ECOWAR, thereby allowing challenging issues such as
the temperature dependence of the water vapor continuum
absorption to be investigated with atmospheric observations.
The resulting improvement to line-by-line radiative transfer
models, and the subsequent improvement of the radiative
transfer models in GCMs, will improve the community’s
ability to simulate climate.
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